

Recall

@ Let (G, o) be a group with generator g

o We define g% = e, where r € G is the identity element of G
I-times

o We define g’ = m

o For example, the group (Z3, x) is generated by 3 but not 2

Repeated Squaring

Motivation of Efficient Algorithm to Compute
Exponentiation

@ Suppose p is a prime number that is represented using
1000-bits

o Note that the number p is in the range [2999,21000) We shall

summarize this by stating that p is roughly (in the order of)
1000

@ Suppose we are interested to work on the field (Zj, x) with
generator g

e Given input i € {0,1,...,p — 1}, we are interested in
computing g’ € Zj,

Repeated Squaring

First Attempt

Exp (/):
@ prod=¢
@ For index in the range {1,...,i}:
® prod =prodog
© Return prod

@ Note that this algorithm runs the inner loop i times. The
number i can take values {0,1,...,p — 2}. For example, if
i > 2590 then the algorithm will run the inner loop more than
the number of atoms in the universe. Effectively, the algorithm
is useless

@ The algorithm takes O(/) run-time. The size of the input i is
log i. So, this algorithm is an exponential time algorithm

Repeated Squaring

Second Attempt |

Exp (/):
@ If i =0: Return e
Q If iis even:
©® o= Exp(i/2)
® Return ao«
Q If i is odd:

@ a=Exp((i—1)/2)
® Return aoaog

@ Note that the argument to Exp becomes smaller by one-bit in
recursive call. So, the algorithm performs (at most) 1000
recursive call. This is an efficient algorithm because it runs in
time O(log /)

Repeated Squaring

Second Attempt |l

A Few Optimizations.

@ Testing whether / is even or not can be performed by
computing i&1 (here, & is the bit-wise and of the binary
representation of / and 1

e Computing (i/2) when i is even, or computing (i — 1)/2 when
i is odd can be achieved by i > 1 (that is, right-shift the
binary representation of i by one position)

Repeated Squaring

Second Attempt IlI

The code shall look as follows

Exp (/):
@ If i=0: Return e
Q,>1
Q If (i&l)==0:

0 o= Exp())
@ Return ao o

Q else:

0 o= Exp(j)
® Returnaoaog

Repeated Squaring

Second Attempt IV

@ The algorithm makes recursive calls. Can we further optimize
and avoid recursive function calls? That is, can we unroll the
recursion into a for loop?

Repeated Squaring

Final Attempt |

In the following code, we assume that we represent the prime p
using t-bits. For example, we were considering t = 1000 in the

ongoing example.
We perform a preprocessing step to compute the following global

variables.

Global Preprocessing.
@ For index in the set {0,1,...,¢t —1}:
@ If index == 0: index = & and Gndex = 1
© Else: Qindex = Qindex—1 © Qindex—1 aNd Cindex = (Cindex—1 < 1)

@ Note that ajpdex = g2i"dex, for all index € {0,1,...,t — 1}

o Further, note that ¢jpgex = 29, for all
index € {0,1,...,t—1}

Repeated Squaring

Final Attempt Il

We shall use the preprocessed data to compute the exponentiation

Exp (/):
Q prod=¢
@ For index in the set {0,1,...,t —1}:
@ If (/ < Gindex) : Break
0 If (i&Cindex) 7 0: prod = prod o Gindex

© Return prod

Note that the test “the (1 + index)-th bit in the binary

representation of / is 1" is identical to the test (i&Cindex) 7# 0
2index

If this test passes, then prod is multiplied by tindex = &

Prove: This approach correctly calculates g’

Note that the runtime is O(log i) (that is, the algorithm is
efficient)

Repeated Squaring

Example Problem

@ Let us consider a problem that shall use all the facts we
studied about groups and fields in the last two lectures. There
are multiple solutions with varying degree of complexities

e Compute
172920 mod 23

Repeated Squaring

Example Problem I

Solution 1.

@ We can use repeated squaring directly to compute

171 mod 23
17° mod 23
17* mod 23

171924 mod 23

o Write 2020 in binary and compute 17292° mod 23 using the
values computed above

@ Although this is a correct and a tractable way to compute this
value, it is computationally intensive and prone to errors
(without a calculator)

Repeated Squaring

Example Problem

Solution 2.

@ In homework you will prove that x? = x mod p, where p is a
prime and x is any integer

@ You can use this fact to simplify the computation of 172020

mod 23 as follows

Repeated Squaring

Example Problem

17 mod 23 =172 - 17" mod 23

2
- (1723) 177 mod 23

87
- (1723) 17" mod 23

=(17)¥ -17"° mod 23, using x* = x mod p
=17 mod 23

4
= (1723) 17* mod 23
=17)*- 17" mod 23, using x* =x mod p
=17"* mod 23

@ This final expression can be computed using the repeated
squaring technique

Repeated Squaring

Example Problem

Solution 3.

@ In homework you will prove that xP~1 =1 mod p, where p is
a prime and x is any integer NOT divisible by p (there are also
alternate proofs of this statement by considering the size of
the subgroup of (Z5, x) that is generated by x)

@ So, we can compute the expression as follows

1722 mod 23 = 17%2 . 17*°%® mod 23

2
- (1722) 1797 mod 23

o1
= (17?)" 17" mod 23
=(1)"-17"® mod 23, using x*"' =1 mod p
=17" mod 23

Repeated Squaring

Example Problem VI

e BTW, in general you can conclude that

n n mod p—1

x" = x mod p,

for any integer n and any integer x that is not divisible by p

o Now you can compute 1718 mod 23 result using repeated
squaring technique

171 =17 mod 23
172 =13 mod 23
17 =8 mod 23
178 =18 mod 23
17 =2 mod 23

Repeated Squaring

Example Problem VII

@ Now, we have

1718 = 171842 mod 23
=17%.172 mod 23
=2.13 mod 23
=3 mod 23

@ Therefore, we conclude that
172020 — 1718 — 3 mod 23.

That is our answer!

Repeated Squaring

